Welcome from the Dean

It is my pleasure to introduce you to Medicine at UNSW Sydney (The University of New South Wales). UNSW Medicine is one of the world’s top 50 medical faculties and attracts brilliant people from around the world. Our students learn alongside world-leading researchers, clinicians, industry and government-based experts. They also are an intrinsic part of the Faculty’s close affiliation with the nation’s finest hospitals, research institutes and health care organisations.

UNSW Medicine recognises that its students must be alive to rapid innovation so as to meet the formidable global, national and local challenges that human disease continues to impose on society. To improve patient care, UNSW Medicine is changing the way medicine is taught and practised; it is also questioning traditional forms of healthcare delivery. If we are to capitalise on new technologies we must be able to understand their potential and their limitations. Graduates of this program will be equipped with the key skills needed to transform data into action so as to enhance the health and well-being of Australians and the global community.

At the Centre for Big Data Research in Health, UNSW Medicine welcomes you to our global community. We are committed to helping you develop the knowledge, skills and values necessary to further your career and welcome you most warmly.

Professor Rodney Phillips
Dean, UNSW Medicine

Welcome from the Director

Welcome to the Health Data Science prospectus, a guide to the programs on offer at UNSW Medicine with the Centre for Big Data Research in Health – a world-first centre dedicated to health research using big data.

The Master of Science, Graduate Diploma and Graduate Certificate in Health Data Science are the first Australasian postgraduate programs in Health Data Science – an exciting discipline that spans the domain areas of health and medicine, mathematics, statistics and computer science. The Health Data Science programs aim to equip graduates with the essential cognitive, analytical and communication skills needed to make sense of health big data.

“Big data” have no agreed definition, but the term is generally applied to data that by virtue of their size and/or complexity pose challenges to traditional methods for management and analysis. In health, such data include the millions of records that are generated routinely by health services, real-time clinical data captured at the point-of-care, genomic and imaging data produced in research and clinical settings, and health-related data generated by the population at large through technologies such as wearable devices and social media. How we make use of this data and transform it into action to better support clinical care, inform health policy and improve population health has never been more important than now.

We sit at a key point in history, where big data are poised to become a dominant driver in what happens in health and healthcare. We have designed our programs in response to a significant and growing gap in the global health workforce: skilled data scientists who understand the context of health and can apply data analytics to drive health improvement.

In these programs, students are exposed to real-world problems and are taught the latest analytical methodologies to derive solutions.

A major feature of the learning experience is a novel social online community giving students opportunities to interact with peers and instructors from diverse backgrounds and workplaces.

The Health Data Science programs will provide pathways into a wide range of health analytics-based careers, or for existing professionals will allow you to understand health big data and use it in your work.

This is an exciting time to become a Health Data Scientist, we welcome you to join us on the journey.

Professor Louisa Jorm
Director, Centre for Big Data Research in Health
# Healthcare needs Health Data Scientists

## THE DATA DELUGE

<table>
<thead>
<tr>
<th>4.4 TRILLION GB</th>
<th>The total amount of data produced in human history up to the year 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>102,400,000</td>
<td>The number of wearable fitness trackers sold worldwide in 2016</td>
</tr>
<tr>
<td>75 DAYS</td>
<td>How long it takes for global health data to double in size</td>
</tr>
<tr>
<td>44 TRILLION GB</td>
<td>The total amount of data humans will have produced by 2020. If that much info was contained in a string of USB each storing 128GB, it would reach the moon and back almost 25 times</td>
</tr>
</tbody>
</table>

## NEED FOR BIG DATA ANALYTICS IN HEALTH

<table>
<thead>
<tr>
<th>2.5 X</th>
<th>The rate Indigenous Australians are admitted to hospitals compared to non-Indigenous Australians - a problem Health Data Scientists at UNSW are working to address</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.6 MILLION</td>
<td>The number of recorded hospitalisations in Australia every year</td>
</tr>
<tr>
<td>217 MILLION</td>
<td>The number of prescriptions issued in Australia in 2015</td>
</tr>
<tr>
<td>1 YEAR</td>
<td>How long it can take for infectious disease researchers to gain access to death certificates, which seriously hinders our ability to respond to new epidemics</td>
</tr>
</tbody>
</table>

## HEALTH DATA SCIENTISTS IN DEMAND

<table>
<thead>
<tr>
<th>#1</th>
<th>Where career experts Glassdoor.com ranked data scientist in their US job rankings for both 2016 and 2017, based on job satisfaction, number of job openings and salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.7 MILLION</td>
<td>The estimated shortfall in the number of data analysts required in the US in 2018</td>
</tr>
<tr>
<td>#1</td>
<td>The ranking for statistical analysis and data mining on LinkedIn’s “Hottest Skills” list for Australia</td>
</tr>
<tr>
<td>$130,000</td>
<td>The median annual salary for analytics professionals in Australia</td>
</tr>
</tbody>
</table>
Why experts are calling data science the sexiest job in the world

Big data scientists are entering the world of healthcare, and the impact is set to be revolutionary.

It’s not often that an occupation is crowned “sexiest job of the century” only a few years after it pops up. But data scientists have bucked the trend and are reigning supreme in the job market – and they’re reaping some impressive benefits as a result.

Proficient at navigating vast oceans of information to fish out hidden trends and patterns, data scientists are at the forefront of computer science and artificial intelligence. They develop software and algorithms to target the information they’re seeking and then, from that mind-numbingly massive coalesce of big data, they extract invaluable insights for their clients.

Now, less than a decade since LinkedIn and Facebook analysts popularised the term “data scientist”, it’s become one of the most coveted roles for ambitious, tech-savvy individuals, with some of the world’s most successful companies like Google and Walmart scrambling to snap them up.

And that’s why back in 2012, the esteemed Harvard Business Review bestowed the title of “Sexiest job of the 21st century” on data scientists.

“Think of him or her as a hybrid of data hacker, analyst, communicator, and trusted adviser,” write The Review’s Thomas H. Davenport and D.J. Patil. “The combination is extremely powerful – and rare.”

Leading a healthcare revolution

In the healthcare sector, data scientists are now coming into their own – particularly with the recent opening of UNSW’s world-leading Centre for Big Data Research in Health.

Using large-scale electronic data that spans the biomedical, clinical and health services domains, the Centre brings together more than 60 research staff and students to tackle critical health issues facing Australian and global communities.

“I love it because it’s so stimulating,” says Professor Sallie-Anne Pearson, head of the Centre’s Medicines Policy Research Unit, which uses big data to determine how medicines are being used locally and internationally.

“It’s science, but there’s a lot of art in this.”

Data scientists in the health sector can’t rely on their technical skill alone, says Peter Cronin, co-founder and managing director of Prospection, a Sydney-based health insights company. They also need people skills, communication skills, and an inquiring mind.

“Being a good data scientist in this sector means first being able to understand what is the question that someone wants to ask. Then you need to understand the data you’re working with, including the limitations of that data,” Cronin explains.

“Thirdly, you have to be able to develop algorithms. And the fourth component is knowing how to communicate or visualise the answer to be able to present it to the client.”

“Within healthcare there are a lot of nuances to the data, and healthcare can be complex,” he says. “It really helps to understand disease and that sort of thing.”

Centre researcher Associate Professor Georgina Chambers of the National Perinatal Epidemiology and Statistics Unit says the exponentially growing area of big data in health is enthralling, but it’s in desperate need of more data scientists to grapple with the issues that come from accessing such data.

“I’m excited by it, but what I sense is that, like a lot of medical science, the science is going to move a lot faster than individuals’ and society’s ability to digest it,” she says.

And because data science is cross-disciplinary, Pearson adds, there are opportunities for everyone.

“What I love about this field is it’s so diverse,” she says. “I’m a behavioural scientist – I’m not a doctor, I’m not a pharmacist. But I’ve been able to establish a research career. Data science welcomes everyone.”

The Health Data Science programs are designed for those new to Health Data Science and those already working in the field looking to up-skill. Whether you are a statistician who wants to build on your current skills with exposure to a field where you can make an impact; a clinician or nurse who wants to expand your capabilities and improve the quality of care received by your patients; or a keen programmer hoping to convert your “on-the-job” experience into a formal qualification, our programs welcome students from a wide range of backgrounds.

Students are guided through the Health Data Science pipeline from the context of health and data curation through to analytics, computation and communication. Our programs use real-world examples and innovative teaching techniques to ensure students gain the essential skills for a career in Health Data Science.

Graduates of the Master of Science program can function at any stage along the Health Data Science pipeline including designing and leading research studies or evaluations, conducting complex analyses, managing teams of data analysts or acting as health policy advisors on the outcomes of study findings. The Health Data Scientists arising from these programs will have a breadth of skills for many different roles in the arena of health big data. Employers of Health Data Scientists can include government Departments of Health, hospitals, universities and research institutes, pharmaceutical companies, health insurance companies and private data analytics consultancies.

As part of the Centre for Big Data Research in Health, at UNSW, you’ll belong to a vibrant community of researchers, educators, and students. Our team have world-leading expertise in managing, manipulating, analysing and visualising health big data. We welcome you to become part of it.

Andrew Blance
Program Director Health Data Science, Centre for Big Data Research in Health
The Master of Science in Health Data Science is fully articulated with options for a Graduate Certificate and Graduate Diploma degree. Students may exit the Master of Science with a Graduate Certificate or Graduate Diploma if they meet the requirements of these programs. The entry requirements for these programs are described on page 16.

Students progress through the Health Data Science pipeline as they work through the degree levels. In the Graduate Certificate, students acquire foundational skills in health context, programming, statistics and data management that progresses into skills in advanced statistics, machine learning and data visualisation in the Graduate Diploma. The Master of Science provides an opportunity to experience the entire Health Data Science pipeline using a real-world health data problem through a dissertation or workplace internship, or students can select a capstone project and further their technical learning with a choice of electives. High achieving graduates of the Master of Science will have potential for consideration of PhD enrollment.

The programs are available as full-time or part-time to internal students (face-to-face) in 2018. Part-time students need to commit 6 hours face-to-face contact hours as a single half day per week (1pm-4pm and 5pm-8pm). The Master of Science can be completed part-time in 3 years.

<table>
<thead>
<tr>
<th>Program</th>
<th>Units of Credit</th>
<th>Duration</th>
<th>Study Mode</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graduate Certificate 7372 (CRICOS 096227I)</td>
<td>24 (4 core courses)</td>
<td>0.5 year full-time</td>
<td>Internal, full-time or part-time</td>
<td>• HDAT9100 Context of Health Data Sciences • HDAT9200 Statistical Foundations for Health Data Science • COMP9021 Principles of Programming • HDAT9400 Management and Curation of Health Data</td>
</tr>
<tr>
<td>Graduate Diploma 5372 (CRICOS 096226K)</td>
<td>48 (8 core courses)</td>
<td>1 year full-time</td>
<td>Internal, full-time or part-time</td>
<td>• HDAT9500 Health Data Analytics: Machine Learning and Data Mining • HDAT9600 Health Data Analytics: Statistical Modelling I • HDAT9700 Health Data Analytics: Statistical Modelling II • HDAT9800 Health Data Analytics: Visualisation and Communication of Health Data</td>
</tr>
<tr>
<td>Master of Science 9372 (CRICOS 096225M)</td>
<td>72 (8 core courses + Research OR Research Capstone and Electives)</td>
<td>1.5 years full-time</td>
<td>Internal, full-time or part-time</td>
<td>• HDAT9900 Health Data Science: Dissertation OR • HDAT9910 Health Data Science: Capstone • Choice of Electives up to 18 UOC</td>
</tr>
</tbody>
</table>
Health Data Science Program Courses

Teaching Approach

Our Health Data Science courses use a blended education teaching approach for a student-centric learning experience. Blended education integrates traditional face-to-face tutorials with interactive online learning activities. In some courses, a flipped classroom approach is utilised wherein students learn theory from short online videos and then use face-to-face sessions to apply knowledge, practice skills or for peer-to-peer learning. Varied assessment modalities are also used throughout the program to engage critical thinking, independent reflection or team work skills, for example reflective blogs, multiple choice question games and debates.

HDAT9100 Context of Health Data Sciences
6 UOC

This course provides an outline of what a contemporary healthcare system looks like. It prompts the student to question what is ‘health’, what impacts upon it, and how is it ‘measured’? What influence does culture and/or geographical location play in this particular viewpoint? What is ‘Evidence Based Medicine’? What role does ethics and patient confidentiality hold? What might healthcare systems and thus health research look like in the future? The strengths and limitations of big data will be introduced. Set against this background, the Health Data Science pipeline is introduced.

The overarching goal is to foster a scientific, questioning attitude in the student, further growing their enthusiasm for Health Data Science.

HDAT9200 Statistical Foundations for Health Data Science
6 UOC

Health data is often complex and noisy. Obtaining actionable insights (or revealing the hidden signals) from such data requires the utilisation of probabilistic concepts. Thus a solid understanding of the principles of statistics is intrinsic to Health Data Science. The aim of this first course in probability theory is to introduce the foundations required to understand such phenomena.

The course design is highly innovative and novel. Statistical computing is used to gain a sound understanding of statistical theories and concepts. Specifically, this course draws on the practical application of Monte Carlo algorithms, which are a very effective method of statistical computing. Once this illustrative approach has (a posteriori) demonstrated a theory, it will then be stated formally.

COMP9021 Principles of Programming
6 UOC

This is a first programming course. It provides an introduction to programming in Python and covers the following essentials: program design and implementation in a high level language, with procedural and object oriented constructs and some functional features; fundamental programming techniques, data structures and algorithms; debugging and testing; simulation; and applications in different areas, including those involving graphical user interfaces and animations.

HDAT9400 Management and Curation of Health Data
6 UOC

This course is designed to equip students with the skills required to appraise the current state of knowledge, collect or obtain data, design data management strategies aligned with best practice, and appreciate the day to day practicalities of data curation for sound data management.

The course will develop practical competencies in structured literature reviews (systematic reviews), critical appraisal, meta-analysis and meta-regression. Building upon this, students will develop data wrangling skills required to assemble data suitable for research purposes. Data wrangling skills will focus on the key areas of data security, data exploration, documentation of data (for example data dictionaries), data management, with the ultimate aim of creating analysis ready datasets.

HDAT9500 Health Data Analytics: Machine Learning and Data Mining
6 UOC

Machine learning is the procedure of applying automated algorithms to data, in order to create knowledge. Investigating data in such a manner is often referred to as data mining. In general, the objective of data mining can be classified into one of four categories: pattern analysis, visualising data, pre-processing (e.g. dimensionality reduction), or outlier detection.

Dependent of the specific objective and data, machine learning can be supervised or unsupervised, involving techniques of classification, regression, clustering, and/or association rules. Further, various methods seek to optimise the training error rate.

HDAT9600 Health Data Analytics: Statistical Modelling I
6 UOC

This course provides a sound grounding in computation for Health Data Science, specifically in the flexible methods of generalised linear modelling (GLM). Building from (simple) linear regression, modelling building techniques are developed and posed within the more general framework of GLMs. The utility of automated selection procedures will be contrasted with Directed Acyclic Graphs (DAGs), for the identification of confounding sets in health research. Model diagnostics and comparisons (Fisher and observed information, likelihood ratio, Wald, Score and deviance) are introduced. Effect modifications (a.k.a. interactions) and their meaning in a health context are explored. Model summaries lead to the interpretation of GLMs from the dual perspectives of estimation and Neyman-Pearson hypothesis testing (p-values). Finally, ‘standard’ biostatistical techniques (for example t-test, ANOVA, ANCOVA, odds ratios) are revealed to be special (simplified) special cases of the GLM.

HDAT9700 Health Data Analytics: Statistical Modelling II
6 UOC

This course builds upon Health Data Analytics: Statistical Modelling I (HDAT9600), expanding the Generalised Linear Model (GLM) to the more powerful and even more flexible Generalised Linear Mixed-effects Model (GLMM). GLMMs are often known as mixed-effects, random-effects, multilevel, or hierarchical models.

Simple hierarchies encountered in health data are first outlined, highlighting the assumptions and consequences of ignoring such hierarchy. Increasingly sophisticated model specifications are introduced.
Health Data Science Program Courses

This sophistication is illustrated through the appropriate modeling of repeated measures (longitudinal) data, including time-varying covariates. A spectrum of model diagnostics and comparisons, both algorithmic and graphical, are used to consider the suitability of GLMM for health research. The role of contextual effects and interactions within the framework is explored. Alternative estimation (MCMC) techniques and outcome distributions appropriate for health data are considered. Cross-classified and multiple-membership models illustrate the flexibility to relax the strict hierarchy. Building from non-parametric, through semi-parametric (proportional hazards), to parametric (relative survival) models, a practical application of survival analysis will be posed as a GLMM. The advantages and limitations of GLMM for health research will be considered.

The course concludes with an overview of some common statistical pitfalls (statistical interaction and collinearity, regression to the mean, reversal paradox, mathematical coupling), with examples drawn from the health research literature.

HDAT9900 Visualisation and Communication of Health Data 6 UOC

Health Data Scientists need to interface with audiences from a broad and varied array of backgrounds, and across the full technical spectrum from lay through to specialist. Thus effective communication is an essential attribute. Further, this capability is required across different media in the forms of the written word, oral presentation and Vis (data communication via a visual medium).

First, this course considers the written and oral forms. Within the written domain protocols, ethics applications, data management plans, analysis plans, literature reviews, abstracts, and manuscripts will be considered. Poster, ePresentations, TED, and Pecha Kucha presentations will be covered in the oral context.

The latter part of the course is devoted to the specialist skill of Vis. The coverage of Vis will offer a basic introduction to cognitive psychology (how the eye and brain combine to form visual perception), Understanding how we ‘see’ is essential for the design of effective Vis, since humans are only capable of holding a surprisingly small amount of visual information at any one time.

HDAT9910 Research Capstone 6 UOC

The capstone project synthesises the program content across the entire Health Data Science pipeline, utilising a computer-adaptive platform. This option allows students to tailor the program towards individual interests, combining with 18 UOC of themed electives.

Electives Up to 18 UOC

• BINF9010 - Applied Bioinformatics (6 UOC)
• BINF9020 - Computational Bioinformatics (6 UOC)
• BIOM9450 - Clinical Information Systems (6 UOC)
• COMP4121 - Advanced and Parallel Algorithms (6 UOC)
• COMP0714 - Information Retrieval and Web Search (6 UOC)
• COMP9024 - Data Structures and Algorithms (6 UOC)
• COMP9101 - Design and Analysis of Algorithms (6 UOC)
• COMP9311 - Database Systems (6 UOC)
• one of the following:
  o COMP9313 - Big Data Management (6 UOC)
  o COMP9318 - Data Warehousing and Data Mining (6 UOC)
  o COMP9319 - Web Data Compression and Search (6 UOC)
• MATH5165 - Optimization (6 UOC)
• MATH5425 - Graph Theory (6 UOC)
• MATH5845 - Time Series (6 UOC)
Entry Requirements

Domestic and international students from a broad background including healthcare, mathematics, statistics and computer science are encouraged to apply.

Direct entry is available for the Master of Science and Graduate Certificate programs. Entry into the Graduate Diploma is through the successful completion of the Graduate Certificate program.

Master of Science in Health Data Science (Program 9372)

The entry criteria are:
• an undergraduate degree in a cognate discipline or
• an undergraduate degree in a non-cognate discipline at honours level or
• successful completion of Graduate Diploma in Health Data Science (Program 5372) or
• qualifications equivalent to or higher than Graduate Diploma in Health Data Science (Program 5372: case-by-case basis)

Graduate Certificate in Health Data Science (Program 7372)

The entry criteria are:
• an undergraduate degree in a cognate discipline or
• an undergraduate degree in a non-cognate discipline at honours level or
• an undergraduate degree in a non-cognate discipline and minimum 1-year full-time equivalent of relevant work experience or
• minimum 3-years full-time equivalent of relevant work experience and tertiary-level training, demonstrating capability in a cognate discipline

Relevant experience is defined as:
• any professional position involving data acquisition, management or handling (e.g. database manager) or
• any professional position involving analytics (e.g. data analyst)

Evidence requirements will be a CV and an employer provided statement of service in relation to relevant experience.

Cognate Discipline is defined as a degree in one of the following disciplines:
- a science allied with medicine, including
  - medicine
  - nursing
  - dentistry
  - physiotherapy
  - optometry
  - biomedical/biological science
  - pharmacy
  - public health
  - veterinary science
  - biology
  - biochemistry
  - statistics
  - mathematical sciences
  - computer science
  - psychology
  - (health) economics
  - data science
  - other (case-by-case basis)

Admissions and Enrolment Process

Apply now for entry into Semester 1, 2018

1. Check you meet the entry requirements described on page 16 and English language requirements (unsw.edu.au/english-requirements-policy)

2. Apply online at UNSW Apply Online (applyonline.unsw.edu.au)
   • Register with UNSW Apply Online
   • Select the Master of Science 9372 or Graduate Certificate 7372 program
   • Upload necessary documents (certified or original documents, CV and employer statement if applicable)
   • Pay A$100 application processing fee
   • Submit application

3. Track application at UNSW Apply Online

4. Accept your offer online
   • Successful applicants will be emailed a Letter of Offer
   • For domestic students, the Letter of Offer will be distributed after 30 November 2017
   • Follow the instructions in the Letter of Offer and accept your offer at www.gettingstarted.unsw.edu.au

5. Enrol in courses online
   • Follow the prompts in the "getting started" website to enrol in courses online

Applications will close at the end of February 2018. Domestic students wanting to be considered for a Commonwealth Supported Place need to apply by 30 November 2017.
## Indicative Fees

The total cost of the Master of Science program will depend on your selection of courses in the final stage of the program. The indicative tuition fees are subject to change on an annual basis.

### Domestic

<table>
<thead>
<tr>
<th>School</th>
<th>per UOC</th>
<th>per 6 UOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Medical Sciences (HDAT/PHAR)</td>
<td>$590</td>
<td>$3540</td>
</tr>
<tr>
<td>School of Computer Science and Engineering (COMP/BINF)</td>
<td>$655</td>
<td>$3930</td>
</tr>
<tr>
<td>Graduate School of Biomedical Engineering (BIOM)</td>
<td>$655</td>
<td>$3930</td>
</tr>
<tr>
<td>School of Mathematics and Statistics (MATH)</td>
<td>$580</td>
<td>$3480</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Program</th>
<th>Total Cost of Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graduate Certificate</td>
<td>$14,550</td>
</tr>
<tr>
<td>Graduate Diploma</td>
<td>$28,710</td>
</tr>
<tr>
<td>Master of Science</td>
<td>$42,690-44,040</td>
</tr>
</tbody>
</table>

### International

<table>
<thead>
<tr>
<th>School</th>
<th>per UOC</th>
<th>per 6 UOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Medical Sciences (HDAT/PHAR)</td>
<td>$865</td>
<td>$5190</td>
</tr>
<tr>
<td>School of Computer Science and Engineering (COMP/BINF)</td>
<td>$860</td>
<td>$5160</td>
</tr>
<tr>
<td>Graduate School of Biomedical Engineering (BIOM)</td>
<td>$860</td>
<td>$5160</td>
</tr>
<tr>
<td>School of Mathematics and Statistics (MATH)</td>
<td>$815</td>
<td>$4890</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Program</th>
<th>Total Cost of Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graduate Certificate</td>
<td>$20,730</td>
</tr>
<tr>
<td>Graduate Diploma</td>
<td>$41,490</td>
</tr>
<tr>
<td>Master of Science</td>
<td>$56,160-62,250</td>
</tr>
</tbody>
</table>

For more information regarding UNSW tuition and other student fees, please visit: student.unsw.edu.au/fees

---

## Commonwealth Supported Places

A limited number of Commonwealth Supported Places will be awarded to eligible domestic students on an academic merit basis. All eligible applications received by 30 November 2017 will be considered for a Commonwealth Supported Place.

## Financial assistance for Domestic students

FEE-HELP is an Australian Government loan scheme that assists eligible full fee-paying students to pay all or part of their tuition fees. For more information, please visit: student.unsw.edu.au/fee-help

## Key Dates

### 2017

- **10 October**: Enrolments open
- **30 November**: Domestic Admissions deadline for Commonwealth Supported Place consideration

### 2018

- **End of February**: Admissions close
- **22-23 February**: Induction and Welcome
- **26 February – 25 June**: Semester 1 Teaching Period (T1)
- **30 March – 8 April**: Mid Semester Break
- **26 June – 22 July**: Mid Year Break
- **23 July – 20 November**: Semester 2 Teaching Period (T2)
- **22 September – 1 October**: Mid Semester Break

The full UNSW academic calendar is available at student.unsw.edu.au/calendar
ABOUT POSTGRADUATE PROGRAMS

Phone: +61 2 9385 9064
Email: MScHDS@unsw.edu.au
Web: cbdrh.med.unsw.edu.au/postgraduate-coursework
Visit: Level 1, Centre for Big Data Research in Health, AGSM Building, UNSW, Kensington, Sydney.